AGC Instruments Main Applications by Detector

	1000 – DID	2000 – ADD	3000 – FID	4000 - TCD
ASU / Tank Farm	 ppb N₂O in O₂ ppb impurities in O₂ (DeOx/Auto-switch of De-Ox with parallel regeneration) ppb impurities in Ne 	H ₂ , O ₂ , N ₂ , CH ₄ , CO and CO ₂ as ppm/ ppb impurities in Ar	 C₁ to C₆₊ ppm in O₂ C₁ to C₆₊ ppm in Air CH₄/ NMHC in O₂ 	 He in Ne Ar + N₂ in O₂ ppm impurities in Ar N₂ Pharmacopeia
N5/N6/N7 Specialty Gases	 Certification of Calibration Gases for trace analysis ppm/ppb impurities in H₂ / He / N₂ / Ar (by single NovaCHROM unit) ppm/ppb Impurities in O₂ (N4.0 to N5.5) ppb impurities including Ne in He N6.0 ppb impurities in Kr or Xe 	 Certification of Calibration Gases for trace analysis ppm/ ppb impurities in Ar, N₂ or CO₂ 	 Certification of Calibration Gases for trace analysis C₁ to C₆₊ in specialty gases CO/CO₂ ppb in specialty gases 	
Corrosive Gases/ Electronic Gases	 ppb impurities in: SF₆ / B₂H₆ / SiCl₄ / AsH₃ / PH₃ / GeH₄ / SiH₄ / NH₃ / HBr / BF₃ / BCl₃ Impurities in Cl₂ or HCl 		ppb CO / CO₂ analysis	% analysis of diluted matrix gas or gas mixtures
Food & Beverage	 ppm H₂/ O₂ / N₂ / CH₄ / CO in CO₂ (ISBT and CGA specifications) 	 ppm H₂/ O₂ / N₂ / CH₄ / CO in CO₂ (ISBT and CGA specifications) 	• VOC in CO ₂ (ISBT & CGA) (e.g. Acetaldehyde, Methanoletc.)	Binary or multi- component gas mixtures with a single unit
Halocarbons	• Impurities in C ₃ F ₈ / C ₄ F ₈ / SF ₆ / NF ₃ / CF ₄ / C ₂ F ₆			Purity of Refrigerants
Rare Gases / Lighting Gases	Impurities in Ne , Kr , Xe			
Steam reformer/ He production or purification/ H ₂ or He	 ppm/ ppb Impurities in He ppm/ ppb impurities in H₂ 		 CH₄/ NMHC in H₂ C₁ to C₄ ppm/ ppb in H₂ or in He 	