## Molecular Property Spectrometer™ Technology (MPS)

ΤM

Detect over 15 Flammable gases Sensor Poisoning solved TrueLEL<sup>™</sup> Multi-Gas accuracy Zero calibration for 5 years Hydrogen ready



# Molecular Property Spectrometer<sup>™</sup> technology accurately detects over 15 hazardous gases in one MPS sensor for better safety and more operational efficiency.

A higher standard of flammable gas detection. Keep people and premises safer, with more efficient and accurate testing. Building on over 50 years of gas expertise, Crowcon is pioneering advanced molecular property spectrometer (MPS<sup>™</sup>) sensor technology that detects and accurately identifies over 15 different flammable gases in one device. Now available in Crowcon's flagship Xgard Bright fixed detector, as well as its T4x and Gasman portable products.



|                                                       | Portable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sensor Poisoning                                      | The MPS <sup>™</sup> sensor has been designed for today's multi-gas<br>environments, resists contamination and prevents sensor poisoning.<br>Give your teams peace of mind with a purpose-built device in any<br>environment.                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| TrueLEL™ Multi-Gas accuracy                           | The MPS <sup>™</sup> sensor accurately detects and identifies over 15 different flammable gases automatically in real time without the need for calibration for 5 years or a correctional factor. Guarantee accurate readings, with no false alarms or non-alarms due to real-time environmental compensation.                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Reduced Fleet Maintenace/Zero calibration for 5 years | The MPS <sup>™</sup> sensor technology<br>does not require calibration or<br>scheduled maintenance over<br>its 5-year+ lifecycle when fitted<br>into our Gasman product*, which<br>reduces interruptions to your<br>operations and increases up-time.<br>The sensor self-monitors and<br>automatically reports any<br>problems with its operation,<br>giving greater peace of mind<br>as well as reduced total cost of<br>ownership. The larger your fleet,<br>the greater the benefits. | The MPS <sup>™</sup> sensor technology<br>does not require calibration and<br>no maintenance over its 5-year+<br>lifecycle meaning a lower total<br>cost of ownership. Scheduled<br>maintenance is no longer<br>needed removing interruptions<br>to your operations. The sensor<br>self-monitors and automatically<br>reports any problems with its<br>operation, giving greater peace of<br>mind as well as reduced cost of<br>ownership. |  |  |
| Hydrogen ready                                        | The MPS <sup>™</sup> sensor is tailor-made for Hydrogen detection. Increased in industrial processes, Infrared detectors cannot identify Hydrogen, so until now, the only option has been Pellistor detection with limitations around accuracy and more susceptible to poise With the MPS <sup>™</sup> sensor, only one device is needed saving space without compromising on safety.                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Increased Battery Life                                | Our portable flammable gas<br>detectors with an MPS sensor<br>help protect workers for longer<br>periods by increasing the battery<br>life by over double therefore<br>reducing the reliance on charging<br>and device down time.                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Zone 0                                                | ATEX Zone 0 / Type 1 approved<br>T4x and Gasman MPS enables<br>operators to enter an area in<br>which an explosive gas<br>atmosphere is present<br>continuously or for long periods<br>without fear their Gasman will<br>ignite their environment.                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |



### **TrueLEL™ Gas Detection**

| Gas                 | Formula                           | Detection Range | Accuracy (0-50 %LEL) |  |
|---------------------|-----------------------------------|-----------------|----------------------|--|
| Butane              | C <sub>4</sub> H <sub>10</sub>    | 0-100 %LEL      | ±5 %LEL              |  |
| Ethane              | C <sub>2</sub> H <sub>6</sub>     | 0-100 %LEL      | ±5 %LEL              |  |
| Hydrogen            | H <sub>2</sub>                    | 0-100 %LEL      | ±5 %LEL              |  |
| Isobutane           | HC(CH <sub>3</sub> ) <sub>3</sub> | 0-100 %LEL      | ±5 %LEL              |  |
| Isobutylene         | C <sub>4</sub> H <sub>8</sub>     | 0-100 %LEL      | ±5 %LEL              |  |
| Isopropanol         | C <sub>3</sub> H <sub>8</sub> O   | 0-100 %LEL      | ±10 %LEL             |  |
| Methane             | CH <sub>4</sub>                   | 0-100 %LEL      | ±3 %LEL              |  |
| Methyl ethyl ketone | C <sub>4</sub> H <sub>8</sub> O   | 0-100 %LEL      | ±5 %LEL              |  |
| Octane              | C <sub>8</sub> H <sub>18</sub>    | 0-100 %LEL      | ±5 %LEL              |  |
| Pentane             | C <sub>5</sub> H <sub>12</sub>    | 0-100 %LEL      | ±5 %LEL              |  |
| Propane             | C <sub>3</sub> H <sub>8</sub>     | 0-100 %LEL      | ±5 %LEL              |  |
| Propylene           | $C_3H_6$                          | 0-100 %LEL      | ±5 %LEL              |  |
| Toluene             | C <sub>7</sub> H <sub>8</sub>     | 0-100 %LEL      | ±12 %LEL             |  |
| Xylene              | $C_8H_{10}$                       | 0-100 %LEL      | ±12 %LEL             |  |

#### Performance

|                                | Resolution  | 0.1 %LEL           |  |  |
|--------------------------------|-------------|--------------------|--|--|
| Resolution Response time (T90) |             | < 20 seconds       |  |  |
|                                | Calibration | Factory calibrated |  |  |

## **Environmental Operating Range**

| Temperature | — 40 to 75 °C |  |  |
|-------------|---------------|--|--|
| Humidity    | 0 to 100 %RH  |  |  |
| Pressure    | 80 to 120 kPa |  |  |

#### **Flammable Gases Detected**

| Gas         | Formula                           | Class5 | Detection<br>Range<br>(%LEL) | % Volume<br>of gas<br>at 100<br>%LEL (ISO<br>10156) | MPS Accu-<br>racy 0 to 50<br>%LEL (ISO<br>10156) | % Volume<br>of gas at<br>100%LEL<br>(IEC60079-<br>20-1) | MPS Ac-<br>curacy 0 to<br>50 %LEL<br>(IEC60079-<br>20-1) |
|-------------|-----------------------------------|--------|------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Butane      | C <sub>4</sub> H10                | 4      | 0-100<br>%LEL                | 1.8                                                 | ±5 %LEL                                          | 1.4                                                     | ±5 %LEL                                                  |
| Ethane      | $C_2H_6$                          | 4      | 0-100<br>%LEL                | 3.0                                                 | ±5 %LEL                                          | 2.4                                                     | ±5 %LEL                                                  |
| Hydrogen    | H <sub>2</sub>                    | 1      | 0-100<br>%LEL                | 4.0                                                 | ±5 %LEL                                          | 4.0                                                     | ±7 %LEL                                                  |
| Isobutane   | HC(CH <sub>3</sub> ) <sub>3</sub> | 4      | 0-100<br>%LEL                | 1.8                                                 | ±5 %LEL                                          | 1.3                                                     | ±9 %LEL                                                  |
| Isobutylene | $C_4H_8$                          | 4      | 0-100<br>%LEL                | 1.8                                                 | ±5 %LEL                                          | 1.8                                                     | ±5 %LEL                                                  |
| Isopropanol | C <sub>3</sub> H <sub>8</sub> O   | 4      | 0-100<br>%LEL                | 2.0                                                 | ±10 %LEL                                         | 2.0                                                     | ±20 %LEL                                                 |
| Methane     | $CH_4$                            | 3      | 0-100<br>%LEL                | 5.0                                                 | ±3 %LEL                                          | 4.4                                                     | ±3 %LEL                                                  |
| MEK         | C <sub>4</sub> H <sub>8</sub> O   | 5      | 0-100<br>%LEL                | 1.4                                                 | ±5 %LEL                                          | 1.5                                                     | ±16 %LEL                                                 |
| Pentane     | $C_5H_{12}$                       | 5      | 0-100<br>%LEL                | 1.5                                                 | ±5 %LEL                                          | 1.1                                                     | ±6 %LEL                                                  |
| Propane     | $C_3H_8$                          | 4      | 0-100<br>%LEL                | 2.1                                                 | ±5 %LEL                                          | 1.7                                                     | ±6 %LEL                                                  |
| Propylene   | $C_3H_6$                          | 4      | 0-100<br>%LEL                | 2.4                                                 | ±5 %LEL                                          | 2.0                                                     | ±5 %LEL                                                  |
| Acetone     | C <sub>3</sub> H <sub>6</sub> O   | 5      | 0-100<br>%LEL                | 2.5                                                 | ±20 %LEL                                         | 2.5                                                     | ±24 %LEL                                                 |
| Ethylene    | $C_2H_4$                          | 4      | 0-100<br>%LEL                | 27                                                  | ±11 %LEL                                         | 2.3                                                     | ±11 %LEL                                                 |
| Heptane     | $C_7H_{16}$                       | 5      | 0-100<br>%LEL                | 1.1                                                 | ±12 %LEL                                         | 0.85                                                    | ±15 %LEL                                                 |
| Octane      | $C_8H_{18}$                       | 6      | 0-100<br>%LEL                | 1.0                                                 | ±12 %LEL                                         | 0.8                                                     | ±15 %LEL                                                 |
| Styrene     | $C_8H_8$                          | 6      | 0-100<br>%LEL                | 1.1                                                 | ±20 %LEL                                         | 1.0                                                     | ±17 %LEL                                                 |
| Toluene     | $C_7H_8$                          | 6      | 0-100<br>%LEL                | 1.2                                                 | ±12 %LEL                                         | 1.0                                                     | ±13 %LEL                                                 |
| Xylene      | $C_8H_{10}$                       | 6      | 0-100<br>%LEL                | 1.1                                                 | ±12 %LEL                                         | 1.0                                                     | ±13 %LEL                                                 |

Notes:

Accuracy guaranteed for methane across full environmental range.

Other gases will typically meet published tolerances across the full environmental range but guaranteed only near standard conditions: 20°C, 50%RH.

Accuracy (+) %LEL corresponds to a higher-than-delivered reading and Accuracy (-) %LEL corresponds to a lower-than-delivered reading.

The MPS is also confirmed to detect other gases including ammonia, acetylene, ethanol, and methanol.

Please consult Crowcon for more info about your requirement

## **Response to Non-Flammable Gases**

*Oxygen* ( $O_2$ ): Normal air has an  $O_2$  concentration of 20.95% by volume. Higher ambient  $O_2$  concentrations up to ~21.8 %VOL have little to no effect on the sensor. Concentrations exceeding this can be reported as a flammable gas at %LEL levels. The cross sensitivity is approximately 1.07 %LEL per 1 %vol  $O_2$  (e.g., oxygen at 30 %vol in air, a 9.1 %vol enrichment, would read approximately 9.7 %LEL and be identified as Class 2 - Hydrogen Mixture). The sensor is immune to poisoning by  $O_2$ .

\*Note: if  $O_2$  concentrations decrease, the sensor response will depend on what gas is displacing the oxygen. Flammable gases displace oxygen. Methane at 100% LEL (5 %VOL methane) will reduce oxygen's relative concentration by 1.05 % VOL in ambient air, meaning the  $O_2$  concentration decreases from 20.9 to 19.85 %VOL. Such flammable-gas-caused  $O_2$  depletions are already considered by the sensor calibration and therefore cause no unwanted effects on sensor output. \*Calculated %LEL assumes normal "air" as the background. Actual %LEL is dictated by limiting oxygen concentration.

*Carbon Dioxide*  $(CO_2)$ :  $CO_2$  is present at concentrations near 400 ppm in normal air. This ambient level of  $CO_2$  is already considered by sensor calibrations. The sensor is unaffected by elevated  $CO_2$  concentrations up to approximately 5,000 ppm. Concentrations above this can be misinterpreted by the sensor as flammable gas. The cross sensitivity is approximately 1.74 %LEL per 1,000 ppm  $CO_2$  (e.g.,  $CO_2$  at 10,000 ppm would read approximately 17.4 %LEL). The sensor is immune to poisoning by CO2.

\*Note: Exhaled human breath contains  $CO_2$  at concentrations of approximately 4-5 %VOL (40,000-50,000 ppm). (During respiration, the  $CO_2$  replaces oxygen, reducing its concentration from 20.95% by volume in normal air to 13.6-16% in exhaled air.) As such, breathing directly onto the sensor can cause it to falsely report flammable gas for a brief period.

#### Disclaimer

Every effort has been made to ensure the accuracy of this document at the time of printing. In accordance with the company's policy of continued product improvement Crowcon Detection Instruments Limited reserves the right to make product changes without notice. The products are routinely subject to a programme of testing which may result in some changes in the characteristics quoted. Technical information contained in this document or otherwise provided by Crowcon are based upon records, tests, or experience that the company believes to be reliable, but the accuracy, completeness, and representative nature of such information is not guaranteed.

Many factors beyond Crowcon Detection Instruments' control and uniquely within user's knowledge

and control can affect the use and performance of a Crowcon product in a particular application. As the products may be used by the client in circumstances beyond the knowledge and control of Crowcon Detection Instruments Limited, we cannot determine the relevance of these to an individual customer's application. It is the clients' sole responsibility to carry out the necessary tests to evaluate the usefulness of the products and review all applicable regulations and standards to ensure their safety of operation in a particular application.

Crowcon reserves the right to change the design or specification of the product without notice. © 2022 Crowcon Detection Instruments Ltd. Copyright to some photographs held separately.



Crowcon reserves the right to change the design or specification of the product without notice © 2022 Crowcon Detection Instruments Ltd. Copyright to some photographs held separately.

#### www.crowcon.com